Application of Particle Swarm Optimization Algorithm to Neural Network Training Process in the Localization of the Mobile Terminal
نویسندگان
چکیده
In this paper we apply Particle Swarm Optimization (PSO) algorithm to the training process of a Multilayer Perceptron (MLP) on the problem of localizing a mobile GSM network terminal inside a building. The localization data includes the information about the average GSM and WiFi signals in each of the given (x,y,floor) coordinates from more than two thousand points inside a five story building. We show that the PSO algorithm could be with success applied as an initial training algorithm for the MLP for both classification and regression problems.
منابع مشابه
Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملOptimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling
Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...
متن کاملComparative Analysis of Neural Network Training Methods in Real-time Radiotherapy
Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...
متن کاملIdentification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm
In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of i...
متن کاملApplication of Multi Objective HFAPSO algorithm for Simultaneous Placement of DG, Capacitor and Protective Device in Radial Distribution Network
In this paper, simultaneous placement of distributed generation, capacitor bank and protective devices are utilized to improve the efficiency of the distribution network. The objectives of the problem are reduction of active and reactive power losses, improvement of voltage profile and reliability indices and increasing distribution companies’ profit. The combination of firefly algorithm, parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013